On a numerical subgrid upscaling algorithm for Stokes-Brinkman equations
نویسندگان
چکیده
This paper discusses a numerical subgrid resolution approach for solving the Stokes-Brinkman system of equations, which is describing coupled flow in plain and in highly porous media. Various scientific and industrial problems are described by this system, and often the geometry and/or the permeability vary on several scales. A particular target is the process of oil filtration. In many complicated filters, the filter medium or the filter element geometry are too fine to be resolved by a feasible computational grid. The subgrid approach presented in the paper is aimed at describing how these fine details are accounted for by solving auxiliary problems in appropriately chosen grid cells on a relatively coarse computational grid. This is done via a systematic and a careful procedure of modifying and updating the coefficients of the Stokes-Brinkman system in chosen cells. This numerical subgrid approach is motivated from one side from homogenization theory, from which we borrow the formulations for the so called cell problem, and from the other side from the numerical upscaling approaches, such as Multiscale Finite Volume, Multiscale Finite Element, etc. Results on the algorithm’s efficiency, both in terms of computational time and memory usage, are presented. Comparison with solutions on full fine grid (when possible) are presented in order to evaluate the accuracy. Advantages and limitations of the considered subgrid approach are discussed.
منابع مشابه
Upscaling of Transport Equations for Multiphase and Multicomponent Flows
In this paper we discuss upscaling of immiscible multiphase and miscible multicomponent flow and transport in heterogeneous porous media. The discussion presented in the paper summarizes the results of in Upscaled Modeling in Multiphase Flow Applications by Ginting et al. (2004) and in Upscaling of Multiphase and Multicomponent Flow by Ginting et al. (2006). Perturbation approaches are used to ...
متن کاملA Subgrid Model for the Time-Dependent Navier-Stokes Equations
We propose a stabilized subgrid finite-element method for the two-dimensional 2D nonstationary incompressible Naver-Stokes equation NSE . This method yields a subgrid eddy viscosity which does not act on the large flow structures. The proposed eddy viscous term is constructed by a fluctuation operator based on an L2-projection. The fluctuation operator can be implemented by the L2-projection fr...
متن کاملA Two--Scale Solution Algorithm for the Elastic Wave Equation
Operator-based upscaling is a two-scale algorithm that speeds up the solution of the wave equation by producing a coarse grid solution which incorporates much of the local finescale solution information. We present the first implementation of operator upscaling for the elastic wave equation. By using the velocity-displacement formulation of the three-dimensional elastic wave equation, basis fun...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملA Discontinuous Subgrid Eddy Viscosity Method for the Time-Dependent Navier-Stokes Equations
In this paper we provide an error analysis of a subgrid scale eddy viscosity method using discontinuous polynomial approximations for the numerical solution of the incompressible Navier–Stokes equations. Optimal continuous in time error estimates of the velocity are derived. The analysis is completed with some error estimates for two fully discrete schemes, which are first and second order in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 65 شماره
صفحات -
تاریخ انتشار 2013